Statistical Models for
 Visual Detection and Recognition

COMPSCI 527

Today: (discrete probabilities)

- Color features and Matlab
- Joint and conditional probabilities
- Bayes's theorem and the Bayes classifier

trace

CC
\% Connected components cc = bwlabel(trace); mask = cc==2 | cc==3 | cc==4; red = img(:, :, 1); green = img(:, :, 2); blue = img(: , :, 3); rgb = [red(mask) , ...
green(mask), blue(mask)];
$n \times 3$ array of pixel values

- Brightness does not matter
- Yellow $\propto\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$
- Orange $\propto\left[\begin{array}{ll}1 & 0.5\end{array} 0\right]$
- Blue does not matter

$$
c=\frac{R-G}{R+G+B}
$$

```
function c = colorToScalar(rgb)
rgb = double(rgb);
denom = sum(rgb, 2);
nz = denom ~= 0;
rgb(nz, :) = rgb(nz, :) ./ (denom(nz) * ones(1, 3));
c = rgb(:, 1) - rgb(:, 2);
```


Data feature: $x=\operatorname{bin}(c)$
World state: $w=\{O, L\}$

$\sum_{w} \sum_{x} p(w, x)=1$

marginals

$$
p(w)=\sum p(w, x)
$$

$$
x \longrightarrow
$$

w

$$
P(x)=P(2, x)
$$

conditionals

$$
p(x \mid w)=\frac{p(w, x)}{p(w)}
$$

$$
p(w \mid x)=\frac{p(w, x)}{p(x)}
$$

\uparrow

10 of these $(b=1, \ldots 10)$
$\longleftarrow 2$ of these ($\mathrm{f}=1,2$)

The Bayes Classifier

- $w=f(x)$: given an image observation x, find the world state w
- we have $p(w \mid x)$
- $f(x)=\arg \max _{w} p(w \mid x)$

Classifier with Confidence

- $f(x)=\arg \max _{w} p(w \mid x) \quad$ [Bayes classifier]
- confidence: some function of $p(w \mid x)$: maybe $c(x)=2[p(f(x) \mid x)-1 / 2]$ for the binary case
- can say "don't know" if c is too small

$$
p(w \mid x)=\frac{p(w, x)}{p(x)}
$$

Noisy Functions

- $f(x)$ is a function that maps each image observation x to a world state w
- $p(w \mid x)$ is a function that maps each image observation x to a distribution over world states w
- conditional probabilities are noisy functions

oranges?

~oranges == lemons?
not really a binary problem!
how well can we possibly do?

Bayes Error Rate

$p(w \mid x)$

$$
f(x)=\arg \max _{w} p(w \mid x)
$$

Cheating Big Time!

Need: training set \cap test set $=\emptyset$

Discrete Bayes's Theorem [one conditional from the other]

$$
p(w, x)=p(w \mid x) p(x)=p(x \mid w) p(w)
$$

$$
\begin{aligned}
& p(x \mid w)=\frac{p(w \mid x) p(x)}{p(w)} \\
& p(w \mid x)=\frac{p(x \mid w) p(w)}{p(x)}
\end{aligned}
$$

Bayes Example

[From Russel and Norvig, Artificial Intelligence, Prentice Hall 1995]

- One in 20 people have a stiff neck
- One in 50,000 people have meningitis
- Half the people with meningitis have a stiff neck
- If you have a stiff neck, should you worry about meningitis?

(world) state data likelihood prior

posterior
evidence

Convenient Notation Abuse

$$
p(w \mid x)=\frac{p(x \mid w) p(w)}{p(x)}
$$

Four functions, one name!

$$
\begin{aligned}
& p_{W \mid X}(w, x)=\frac{p_{X \mid W}(x, w) p_{W}(w)}{p_{X}(x)} \\
& {[\text { Note: } p(a, b \mid c, d)=p((a, b) \mid(c, d))]}
\end{aligned}
$$

[book uses Pr instead of p]

